The conjugation and effective charges of the atoms at the triple bond in germylacetylenes

A. N. Egorochkin, ** S. E. Skobeleva, T. G. Mushtina, and E. T. Bogoradovsky

aG. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 ul. Tropinina, 603600 Nizhnii Novgorod, Russian Federation.

Fax: +7 (831 2) 66 1497. E-mail: imoc@infotel.msk.su

bSt. Petersburg State Technological Institute,

26 Moskovsky prosp., 198013 St. Petersburg, Russian Federation.

Fax: +7 (812) 110 6285

The integrated extinction coefficients (A) of the C=C stretching modes in the IR spectra of 12 germylacetylenes $Me_3GeC=CR$ are determined by the resonance interactions of substituents with the triple bond. The $A^{1/2}$ values change linearly with change in the difference between the effective π -electron charges on the atoms at the triple bond and σ^0_R constants of organic substituents R. The average value of the σ^0_R constant of the Me_3Ge substituent in the compounds studied is +0.06. The resonance acceptor effect of the Me_3Ge substituent toward the triple bond $(d,\pi$ -conjugation) is stronger than the donor effect $(\sigma,\pi$ -conjugation).

Key words: germylacetylenes, integrated extinction coefficients, effective charge, d,π -conjugation, σ,π -conjugation.

Generally, the conjugation in compounds R_{π} -X is determined not only by the properties of organic (R) and organoelement (MR₃, M = Si, Ge, Sn, Pb) substituents X, but also by those of the reaction (indicator) center R_{π} (Ph-, H₂C=CH-, HC=C-, etc.).¹⁻³ Therefore, it is impossible to characterize the capability of substituents X for conjugation by universal parameters, which are invariant toward R_{π} . The charge on the R_{π} fragment and its type (in the case of organoelement compounds with $X = MR_3$) are of great importance. ¹⁻⁵ The σ^0_R -parameters of the substituents are a measure of resonance interactions in the ground electron state of isolated R_x-X molecules for any X (R and MR₃).6 If a small (-0.01 e) or large (-0.1 e) positive charge is induced on the R_{π} fragment as a result of chemical or physical perturbations (e.g., upon complexation or ionization of $R_\pi-X$ molecules), then the conjugation is characterized 1-5 by σ_R and σ_R^+ parameters, respectively. In addition, the values of resonance parameters of a fixed substituent MR₃ (for instance, GeMe₃ in compounds R_x-MR₃) change when varying the type of R_{π} (in contrast to X = R), 1,2,5,7,8 The reasons for the lesser universality of the parameters of organoelement substituents as compared to those of organic substituents remain unclear, which is, in particular, due to fragmentary experimental data on the dependence of $\sigma\text{-parameters}$ of MR_3 substituents on the R_π type in compounds R_{π} -MR₃. The solution of this problem, which is critical for physical organometallic chemistry, suggests a progressive increase in the number of studied series of R_{π} -MR₃ compounds.

The aim of this work is to study the resonance effects in trimethylgermylacetylene derivatives Me₃GeC=CR by

analyzing the integrated extinction coefficients of the v(C=C) IR bands, to estimate changes in the effective charge on the indicator center in the case of conjugation with the Me₃Ge substituent, and to calculate the σ^0_R parameter of this substituent.

Experimental

The studied compounds were synthesized following the known procedures. 9,10 The purity of the compounds was monitored by GLC.

The purity of freshly prepared solvent CCl₄ was monitored by UV and IR spectroscopy.

The integrated extinction coefficients (A) of the C \equiv C stretching bands in the 1R spectra were measured on an UR-20 spectrophotometer in the wavelength range 2000—2300 cm⁻¹ for solutions of the compounds under study (0.1—0.4 mol L⁻¹) in CCl₄.

The A values are given in IUPAC practical units (L² mol⁻¹ cm⁻²) and determined following a previously described procedure, ¹¹ which was used earlier for the determination of A values in compounds HC=CR, ¹² Me₃CC=CR, ¹³ and Me₃SiC=CR. ¹⁴

Correlation equations were calculated using the standard Statgraphics 3.0 program package on a PC AT 286 personal computer. The data were processed by the least squares method at a 95% confidence level.

The values of the σ^0_R constants of organic substituents were taken from the literature. 12,14,15

Results and Discussion

The integrated extinction coefficients A of the $v(C \equiv C)$ stretching bands in the IR spectra of the studied

Table 1. Integrated extinction coefficients (A) and σ^0_R constants of substituents R for compounds Me₃GeC=CR

Comp	po- R	A /L ² mol ⁻¹ cm ⁻²	A ^{1/2} a /L mol ^{-1/2} cm	σ ⁰ R ^δ
1	CH ₂ GeMe ₃	4520	-67.2	-0.18
2	CH ₂ SiMe ₃	4300	65.6	-0.18
3	SC ₆ F ₅	~1500	-38.7	-0.12
4	CH ₂ Ph	1620	-40.2	-0.11
5	Ph	1420	-37.7	-0.10
6	$CH_2C_6F_5$	845	-29.1	-0.08
7	CH ₂ SPh	830	-28.8	-0.08
8	CH ₂ OMe	600	-24.5	-0.07
9	CH ₂ SC ₆ F ₅	370	-19.2	-0.02
10	CH ₂ Br	130	-11.4	-0.02
11	Н	420	-20.5	0
12c	СНО	1955	44.2	0.24

^a The $A^{1/2}$ values are alternating; according to the literature data, ^{12–14} they have the same sign as the σ^0_R values for substituents R. ^b See Ref. 14. ^c See Ref. 16.

Me₃GeC=CR compounds change over a wide range depending on the organic substituents R (Table 1). As follows from the general theory of vibrational spectra, ¹⁷ the electronic effects of Me₃Ge and R substituents are the only reason for changes in the A values only if the $\nu(C=C)$ vibration is characterized by its eigenvector. If this condition is fulfilled, then the C=C fragment can be considered to a good approximation as a diatomic molecule C=C. The following relationships are known to be valid for such molecules ¹⁷

$$A \sim (\partial \mu_{\text{C}=\text{C}}/\partial q_{\text{C}=\text{C}})^2 \tag{1}$$

and

$$\partial \mu_{\text{CaC}} / \partial q_{\text{CaC}} \approx \mu_{\text{CaC}} / r_0,$$
 (2)

and, hence, at $r_0 = \text{const}$

$$A^{1/2} \sim \mu_{C_{\pi}C_{\tau}}$$
 (3)

In these relationships $\mu_{C \times C}$ is the dipole moment of the C = C bond, $q_{C \to C}$ is the stretching coordinate of the C = C bond, and r_0 is the interatomic C = C distance.

In turn, the dipole moment of the C=C fragment considered as a diatomic molecule taking into account the limitations (see, for instance, Ref. 18) is defined by the formula

$$\mu_{C=C} = Qr_0, \tag{4}$$

where Q is the difference between the effective charges on the atoms of the C=C fragment.

The π -component μ_{π} of the dipole moment of the C=C bond and the difference between the effective π -electron charges on the atoms of the C=C fragment q_{π} is of prime interest for studying the conjugation in Me₃GeC=CR molecules. In this case expression (4) takes the form

$$\mu_{\pi} = q_{\pi} r_0. \tag{5}$$

The A values for HC \equiv CR, Me₃CC \equiv CR, and Me₃SiC \equiv CR molecules are virtually dependent only on the resonance interactions between the substituents and the π -electron system. ¹²⁻¹⁴ If it is assumed to be also valid for Me₃GeC \equiv CR molecules, then in the case of non-coupled v(C \equiv C) vibration one can expect on the basis of relationships (3) and (4) that the following dependence is valid

$$A^{1/2} \sim q_{x}. \tag{6}$$

The dependence (6) can be proved using a direct or indirect approach.

We consider first the second approach. To this end, let us discuss the problem of contribution of other modes to the $v(C\equiv C)$ stretching mode. In monosubstituted HC \equiv CR and disubstituted Me₃CC \equiv CR and Me₃SiC \equiv CR compounds, the mass of the substituent has no effect on the $v(C\equiv C)$ vibration, where the C \equiv C bond length is predominantly changed. ^{12–14,17,19} Though some mixing of $v(C\equiv C)$ stretching mode with the $v(CC\equiv)$ and $v(SiC\equiv)$ stretching modes (in Me₃CC \equiv CH and Me₃SiC \equiv CH, respectively) has been established. ¹⁹ its contribution to the $v(C\equiv C)$ mode in acetylene derivatives is small. This is clearly supported by linear dependences between $A^{1/2}$ and σ^0_R (σ^0_R are the resonance constants of substituents R), which take the form

$$A^{1/2} = 217\sigma^0_R + 10.8 (r = 0.992),$$
 (7)

$$A^{1/2} = 213 \sigma^0_R + 38.3 (r = 0.995),$$
 (8)

$$A^{1/2} = 197\sigma^{0}_{R} - 24.7 \ (r = 0.969). \tag{9}$$

for compounds HC≡CR, Me₃CC≡CR, and Me₃SiC≡CR, respectively. 12-14

The presence of the absolute term in Eq. (7) is the manifestation of slight coupling of the v(C=C) mode in HC=CR molecules. If the v(C=C) mode is totally pure, the line (7) should pass through the origin.

According to the data of normal coordinate analysis, ¹⁹ an increase in the atomic number of the central element M (C, Si, Ge, and Sn) in Me₃MC \equiv CH molecules is accompanied by the decrease in contribution of other modes to the v(C \equiv C) mode. Therefore, it can be suggested that dependences of the type (7)—(9) will be all the more valid for germylacetylenes Me₃GeC \equiv CR.

Processing the data for compounds Me₃GeC=CR (see Table 1) by the least squares method following this hypothesis lead to the equation

$$A^{1/2} = 253\sigma^0_R - 13.0 \tag{10}$$

$$(S_a = 16, S_b = 2.0, S_V = 5.8, r = 0.981, n = 12).$$

Equation (10) serves as an indirect confirmation of dependence (6). In fact, the σ^0_R constants in expressions (7)—(10) are quantitative characteristics of conjugation

Table 2. The $A^{1/2}$ values for compounds Me₃GeC=CR, σ^0_R constants of substituents R, and Δq_{κ} values calculated by the ab initio method⁶ for compounds HC=CR

R	σ ⁰ R	A ^{1/2} /L mol ^{-1/2} cm ⁻¹	Δq _x /e	
NH ₂	-0.47	-131.9	-0.117	
OM _c	-0.43	-121.8	-0.089	
ОН	-0.40	-114.2	-0.087	
F	-0.34	-99.0	-0.062	
Me	-0.10	-38.3	-0.012	
CH=CH,	-0.05	-25.6	-0.010	
H	0	-13.0	0	
CF ₃	0.10	12.3	0.005	
CN	0.09	9.8	0.021	
CHO	0.24	47.7	0.042	
COMe	0.22	42.7	0.043	
NO ₂	0.17	30.3	0.061	
NO	0.25	50.2	0.077	

of the substituents R with the triple bond. At the same time, the difference between the effective π -electron charges on the atoms of the C \equiv C fragment q_{π} in relationship (6) is, by definition, also changed only due to the effect of the resonance interactions of substituents with the π -system. According to the earlier studies, 6 both characteristics of the resonance effect, namely, σ^0_R and q_{π} , are closely related to each other.

It is also possible to obtain a direct confirmation of the fulfilment of relationship (6). In Table 2, the Δq_{π} parameters for compounds HC=CR calculated by the ab initio method (using the 4-31G basis set)⁶ are listed. These parameters characterize the π -electron transfer in the case of resonance interactions between the HC=C indicator center and substituents R and hence are relative characteristics of the π-electron charge on the C atoms at the triple bond. For R = H, the Δq_{π} is equal to zero. The resonance electron donor and resonance electron acceptor substituents R in HC=CR are characterized by negative and positive values of Δq_{π} , respectively. Then, using the σ^0_R constants of substituents R and Eq. (10), we calculated the $A^{1/2}$ values for compounds Me₁GeC≡CR containing the same R as compounds HC=CR with known Δq_{π} values (see Table 2). To increase the reliability of statistical processing, we, as well as the authors of Ref. 6, provided the maximum representative sample. Therefore, calculated values of $A^{1/2}$ and Δq_a^6 for compounds not reported in the literature are also listed in Table 2. The linear dependence is observed for Me₃GeC≡CR derivatives

$$A^{1/2} = 1081\Delta q_{\pi} - 16.3 \tag{11}$$

$$(S_a = 67, S_b = 4.0, S_Y = 14.4, r = 0.979, n = 13).$$

Equation (11) serves as direct confirmation of the fulfilment of relationship (6).

It follows from the aforesaid that the $A^{1/2}$ values are justified characteristics of the conjugation in acetylene

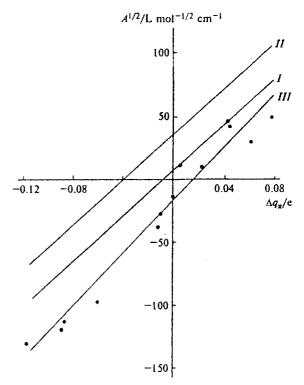


Fig. 1. Dependence of the $A^{1/2}$ values on the Δq_R parameters for compounds HC=CR (line I, Eq. (12)), Me₃CC=CR (line II, Eq. (13)), and Me₃GeC=CR (line III, Eq. (11)). The points corresponding to line III are shown.

derivatives. Therefore, with the aim of studying the conjugation of the Me₃Ge substituent with the triple bond, let us analyze Eqs. (10) and (11) in more detail.

For compounds HC=CR and Me₃CC=CR with standard sets of substituents R listed in Table 2, equations of the type (11) take the form¹⁴

$$A^{1/2} = 930\Delta q_x + 7.9 \ (r = 0.983) \tag{12}$$

and

$$A^{1/2} = 913\Delta q_{\pi} + 35.5 \ (r = 0.983).$$
 (13)

respectively.

Lines I-III on the plot (Fig. 1) are approximately parallel. As was shown previously, ¹⁴ the shift of line II with respect to line I toward negative Δq_{π} values by -0.031 e is due to the resonance donor properties (the +M-effect) of the Me_3C group. In contrast to this, line III corresponding to compounds $Me_3GeC \equiv CR$ is shifted toward positive Δq_{π} values with respect to line I corresponding to compounds $HC \equiv CR$. This is unambiguous evidence for the resonance acceptor properties (the -M-effect) of the Me_3Ge substituent in trimethylgermylacetylene and its derivatives. Depending on the type of R, the magnitude of the considered shift between lines III and I (see Fig. 1) varies from +0.043 e (for NH_2 , which is a typical electron donor substituent) to +0.017 c (for NO, which is a typical electron acceptor substi-

tuent). The average value of the shift $(+0.030\pm0.013 \text{ e})$ characterizes the decrease in the negative effective charge of the atoms at the triple bond upon substitution of the H atom by the Me₃Ge group in monosubstituted acetylenes HC≡CR. Comparison of the value +0.03 e with the Δq_{\star} values in Table 2 shows that the Me₃Ge substituent is comparable in its resonance acceptor properties toward the triple bond to typical organic electron-accepting substituents of the -M-type. The negative effective charge of the atoms at the triple bond decreases by 0.036 e upon substitution of the H atom in HC=CR by the Me₃Si group. 14 This is in agreement with commonly accepted ideas on the decrease in the resonance acceptor effect of the elements of the silicon subgroup towards the π - and n-systems upon increasing their atomic numbers.1

The total resonance effect of the Me_3Ge substituent includes two components, the acceptor component (the d,π -conjugation, i.e., the interaction of 4d orbitals of the Ge atom and σ^* -orbitals of the Ge—C bond with the π -system) and the donor component (the σ,π -conjugation, i.e., the interaction of σ -orbitals of the Ge—C bond with the π -system). As was shown above, the total effect of this substituent is an acceptor effect. This means that for the $Me_3GeC = CR$ molecules in the ground electron state the d,π -conjugation obviously dominates over σ,π -conjugation.

This conclusion is confirmed by the magnitude and sign of the σ⁰_R constant of the Me₃Ge substituent in compounds Me₃GeC≡CR. Actually, lines II and III corresponding to compounds Me₃CC≡CR and Me₃GeC=CR, respectively, are on the opposite sides from line I corresponding to compounds HC≡CR on the plot in coordinates $A^{1/2} - \sigma^0_R$ (Fig. 2). The parallel shift of line // along the σ^0_R axis toward negative σ^0_R values is due to the resonance donor +M-effect of the Me₃C group. The magnitude of the shift between lines II and I is the σ^0_R value of the Me₃C substituent and is equal to -0.13. Line III is shifted toward positive σ^0_R values with respect to line 1. This is due to the resonance acceptor -M-effect of the Me₃Ge group, i.e., to the domination of the d_{π} -conjugation over σ_{π} -conjugation in the total effect of the conjugation of the Me₃Ge group with the π -system of C=CR. In the studied range of $A^{1/2}$ values, i.e., from -67.2 (for a typical resonance donor CH₂GeMe₃) to +44.2 (for a typical resonance acceptor CHO), the average value of the shift between lines I and III along the σ^0_R axis is $\pm 0.11 \pm 0.03$. This value is the σ⁰_R constant of the Me₃Ge substituent in Me₃GeC≡CR molecules, whose electronic structure was not changed due to ionization, strong specific solvation, and chemical reactions. The σ^0_R constant of the Me₃Si substituent in Me₃SiC≅CR determined in such a way is equal to +0.17. The decrease in the σ^0_R value of the Me₃M substituent on going from M = Si to M = Ge serves as one more confirmation of weakening of d, n-conjugation with increase in the atomic number of the central M atom.

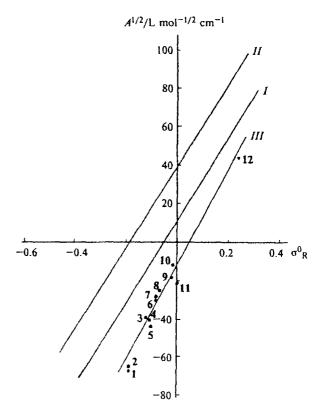


Fig. 2. Dependence of the $A^{1/2}$ values on the resonance σ^0_R constants of substituents R for compounds HC=CR (line I, Eq. (7)), Me₃CC=CR (line II, Eq. (8)) and Me₃C=CR (line III, Eq. (10)). Points corresponding to line III are shown; their numbering corresponds to that of the compounds in Table 1.

It should be noted that difficulties, caused by the approximate character of the method of determination of σ^0_R used previously 14 and in this work, arise when estimating the accuracy of the obtained values of σ^0_R constants of the Me₃Ge and Me₃Si substituents (+0.11 and +0.17, respectively). In fact, as was shown above, this method is fairly rigorous only if the v(C≡C) mode in Me₃CC≡CR, Me₃SiC≡CR, and HC≡CR. Me₃GeC=CR series is totally pure. The fulfillment of this condition was considered in Refs. 12-14, 17, and 19; it follows from the results of these studies that the v(C≡C) mode in compounds HC≡CR is most likely slightly coupled. Therefore, the line corresponding to the equation for compounds HC=CR does not pass through the origin. After exclusion of the absolute term, Eq. (7) is transformed into the following relationship

$$A^{1/2} = 217\sigma^0_{\mathbf{R}}. (14)$$

Formula (14) expresses the relationship between the $A^{1/2}$ and σ^0_R values for such a hypothetical situation when the contribution of other modes to the v(C=C) mode in compounds HC=CR is small. In $Me_3MC=CH$ molecules, the contribution of other modes to the v(C=C)

mode decreases as the atomic number of M (C, Si, Ge, and Sn) increases. 19 Therefore, the complicated influence of coupled vibrations can be reduced to a minimum if the shifts along the σ^0_R axis of the lines described by Eqs. (10) and (9) with respect to the line calculated using Eq. (14) are used for the calculation of σ⁰_R constants of the Me₃Ge and Me₃Si substituents. The σ^0_R values of the Me₃Ge and Me₃Si substituents $(+0.06\pm0.03 \text{ and } +0.12\pm0.02, \text{ respectively})$ determined in such a manner seem to be more reliable as compared to the values +0.11 and +0.17 calculated without taking account of contributions of other modes to the v(C=C) mode in HC=CR molecules. Thus, in particular, the value +0.06 lies in the range of the change in the σ^0_R values for the Me₃Ge group (-0.1-+0.07) obtained using various physical methods.20

The contribution of other modes to the $v(C \equiv C)$ vibration in HC=CR molecules can also be taken into account for a more precise estimate (as compared to that described above) of the change in the effective charge of the atoms of the C=C fragment caused by the effect of resonance interactions between Me₃M substituents and the π -system in Me₃MC=CR compounds (M = Si and Ge). After exclusion of the absolute term, Eq. (12) is transformed into the following relationship

$$A^{1/2} = 930\Delta q_{\pi}. \tag{15}$$

Formula (15) expresses the relationship between the $A^{1/2}$ and Δq_x values (change in the effective π -electron charge on the atoms of the C=C fragment due to conjugation of the substituent R with the triple bond) for such a hypothetical situation when the contribution of other modes to the v(C≡C) mode in molecules HC≡CR is small. In contrast to compounds HC=CR, the A1/2 and Δq_{\star} values in compounds Me₃GeC=CR should be determined by resonance interactions of the π -system not only with the substituent R, but also with the Me₃Ge group. However, Eq. (11) was obtained assuming that the A^{1/2} values for Me₃GeC±CR depend only on the resonance interactions involving R. Therefore, the line corresponding to Eq. (11) is shifted along the Δq_{π} axis with respect to the line corresponding to Eq. (15). The shift varies from +0.035 e (for R = NH₂) to +0.008 e (for R = NO). The average value of the shift (0.022±0.013 e) characterizes the decrease in the negative effective charge of the atoms of the C=C fragment caused by resonance acceptor properties of the Me₃Ge substituent. Analogous calculations for Me₃SiC≠CR compounds performed using the literature data¹⁴ showed that the negative effective charge on the atoms of the C=C fragment is decreased by 0.028±0.010 e due to resonance acceptor properties of the Me₃Si substituent.

Thus, both rough and more accurate estimates of σ^0_R constants of Me₃M substituents and changes in the effective π -electron charge on the atoms of the C=C fragment in the case of resonance interactions of these substituents with the triple bond show that the d_{π} -conjugation in Me₃MC=CR molecules, first, domi-

nates over $\sigma_{,\pi}$ -conjugation and, second, it becomes weaker on going from M = Si to M = Ge.

It should be noted that the increase in the slope of Eq. (10) as compared to those of Eqs. (7) and (8) as well as the increase in the slope of Eq. (11) as compared to those of Eqs. (12) and (13) can be due to several reasons, e.g., to the effect of direct polar conjugation and the limited number of compounds studied. These problems will be considered elsewhere. Here we only note that a possible effect of direct polar conjugation between the Me₃Ge and R substituents in Me₃GeC=CR molecules on the integrated extinction coefficients A should be of secondary importance, which is indicated by the sharp decrease in the correlation coefficient r of the equation

$$A^{1/2} = 257\sigma_R - 4.7$$
 (16)
 $(S_a = 50, S_b = 7.4, S_Y = 16.5, r = 0.901, n = 8)$

as compared to that of Eq. (10).

Line (16) was obtained for eight compounds from Table 1, for which the values of σ_R constants of organic²¹ and organometallic²² substituents are known, namely, 1 (-0.27), 2 (-0.24), 4 (-0.05), 5 (-0.13), 8 (-0.12), 10 (0), 11 (0), and 12 (+0.09). If the resonance effects of substituents R in the same germylacetylenes $Me_3GeC \equiv CR$ are characterized by σ_R^0 constants rather than by σ_R values, then Eq. (16) is transformed into the following equation:

$$A^{1/2} = 258\sigma^{0}_{R} - 14.3$$
 (17)
 $(S_a = 18, S_b = 2.5, S_Y = 6.5, r = 0.985, n = 8).$

The σ_R constants are quantitative characteristics of the resonance properties of substituents R in relation to the multiple bond in the case of direct polar conjugation in the molecule (see, for instance, Refs. 1—5). Therefore, the decrease in r and the increase in the standard error of approximation S_Y upon changing the σ_R^0 variable by σ_R (the passage from Eq. (10) or Eq. (17) to Eq. (16)) indicates the insignificant effect of the direct polar conjugation on the A values of germylacetylenes $Me_3GeC=CR$.

The spectral investigations were carried out at the Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences with the financial support of the Russian Foundation for Basic Research (Project No. 96-03-40042).

References

- A. N. Egorochkin, Usp. Khim., 1992, 61, 1092 [Russ. Chem. Rev., 1992, 61 (Engl. Transl.)].
- A. N. Egorochkin, S. E. Skobeleva, and T. G. Mushtina, Izv. Akad. Nauk, Ser. Khim., 1997, 1626 [Russ. Chem. Bull., 1997, 46, 1549 (Engl. Transl.)].
- 3. A. N. Egorochkin, S. E. Skobeleva, and T. G. Mushtina, in Tez. dokl. V Vseros. Simp. "Stroenie i reaktsionnaya sposobnost"

- kremnijorganicheskikh soedinenii" [Abstracts Vth All-Russian Symp. "The Structure and Reactivity of Organosilicon Compounds"], Irkutsk, 1996, 2 (in Russian).
- A. N. Egorochkin, G. A. Razuvaev, and M. A. Lopatin, J. Organomet. Chem., 1988, 344, 49.
- A. N. Egorochkin, S. E. Skobeleva, and T. G. Mushtina, *Izv. Akad. Nauk, Ser. Khim.*, 1995, 289 [Russ. Chem. Bull., 1995, 44, 280 (Engl. Transl.)].
- S. Marriott and R. D. Topsom, J. Mol. Struct., 1984, 106, 277.
- A. N. Egorochkin, S. E. Skobeleva, and V. L. Tsvetkova, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 1383 [Russ. Chem. *Bull.*, 1993, 42, 1316 (Engl. Transl.)].
- A. N. Egorochkin, S. E. Skobeleva, V. L. Tsvetkova, E. T. Bogoradovsky, and V. S. Zavgorodny, Metalloorg. Khim., 1991, 4, 362 [Organomet. Chem. USSR, 1991, 4, 171 (Engl. Transl.)].
- Chemistry of Acetylenes, Ed. H. G. Viehe, M. Dekker, New York, 1969.
- V. Jager, M. Murray, U. Niedballa, and H. G. Viehe, Methoden der Organischen Chemie (Houben-Weil), Ed. E. Muller, Georg Thieme, 1977, 5/2a.
- R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, J. Am. Chem. Soc., 1966, 88, 1413.
 T. B. Gridley, K. F. Johnson, A. R. Katritzky, H. J.
- T. B. Gridley, K. F. Johnson, A. R. Katritzky, H. J. Keogh, C. Thirkettle, R. T. C. Brownlee, J. A. Munday, and R. D. Topsom, J. Chem. Soc., Perkin Trans. 2, 1974, 276.

- T. B. Grindley, K. F. Johnson, A. R. Katritzky, H. J. Keogh, C. Thirkettle, and R. D. Topsom, J. Chem. Soc., Perkin Trans. 2, 1974, 282.
- 14. A. N. Egorochkin, S. E. Skobeleva, T. G. Mushtina, and E. T. Bogoradovsky, Izv. Akad. Nauk, Ser. Khim., 1997, 76 [Russ. Chem. Bull., 1997, 46, 71 (Engl. Transl.)].
- A. R. Katritzky and R. D. Topsom, Chem. Rev., 1977, 77, 639.
- A. S. Medvedeva, O. I. Margorskaya, I. D. Kalikhman,
 N. I. Golovanova, N. I. Shergina, and N. S. Vyazankin,
 Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 321 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 246 (Engl. Transl.)].
- M. V. Vol'kenshtein, L. A. Gribov, M. A. El'yashevich, and B. I. Stepanov, Kolebaniya molekul [Molecular Vibrations], Nauka, Moscow, 1972 (in Russian).
- 18. V. I. Minkin, O. A. Osipov, and Yu. A. Zhdanov, Dipol'nye momenty v organicheskoi khimii [Dipole Moments in Organic Chemistry], Khimiya, Leningrad, 1968 (in Russian).
- A. V. Belyakov, V. S. Nikitin, and M. V. Polyakova, Zh. Obshch. Khim., 1995, 65, 81 [Russ. J. Gen. Chem., 1995, 65 (Engl. Transl.)].
- A. N. Egorochkin and G. A. Razuvaev, Usp. Khim., 1987,
 1480 [Russ. Chem. Rev., 1987, 56, 846 (Engl. Transl.)].
- C. Hansch, A. Leo, and R. W. Taft, Chem. Rev., 1991, 91, 165.
- A. N. Egorochkin, S. E. Skobeleva, E. T. Bogoradovsky, and T. P. Zubova, Izv. Akad. Nauk, Ser. Khim., 1994, 1041 [Russ. Chem. Bull., 1994, 43, 976 (Engl. Transl.].

Received May 22, 1997; in revised form November 10, 1997